Magnesian kirschsteinite in
melilitolites of the Pian di Celle volcano, Umbria, Italy
Sharygin V.V.
V.S.Sobolev Institute of
Geology and Mineralogy SD RAS, Novosibirsk, Russia
sharygin@igm.nsc.ru
Kirschsteinite (mainly
CaFeSiO4) is quite rare mineral in natural and technogenic
systems. Its compositions with high Fe were found in meteorites,
kimberlites. technogenic parabasalts and slags. Magnesian kirschsteinite
and ferroan monticellite are most common of magmatic alkaline mafic
rocks and high-temperature skarns (Andersen et al., 2012; Konev,
Samoilov, 1974; Melluso et al., 2010; Platz et al., 2004; Sahama,
Hytönen, 1957; 1958; Stoppa et al., 1997). This report is devoted to the
finding of magnesian kirschsteinite in melilitolites of the Pian di
Celle volcano, Italy. Only monticellite was previously described in
melilitic rocks of this volcano (Stoppa et al., 1997).
Melilitolites represent the
final event in the activity of the Pian di Celle volcano. They form
peculiar pegmatoid vienlets with numerous vesicles in one of lava flows
of melilitites - venanzites (Stoppa, 1995). The rocks contain
coarse-grained melilite (up 5 cm), olivine, leucite, fluorophlogopite
and Ti-magnetite as essential phenocrystal minerals that resembles in
moda to fine-grained groundmass of the hosted venanzites. The
interstices between essential phases are filled with fine-grained
groundmass consisting Ti-rich magnetite, fluorapatite, fluorophlogopite,
nepheline, kalsilite, clinopyroxene, Zr-Ti-disilicates, umbrianite,
kirschsteinite, westerveldite, sulfides, aenigmatite, carbonate
globules, and brown or green glass (Bellezza et al., 2004; Sharygin et
al., 1996; 2011; Stoppa et al., 1997). Majority of the above minerals
occur as well-shaped crystals in numerous rock vugs (up to 3 cm), in
which the post-magmatic phases (zeolite, apophyllite, calcite, etc.) and
vanadinite are also common.
Magnesian kirschsteinite
was found in the groundmass, in which it is closely associated with
coarse-grained olivines and sometimes forms the overgrowths around them
(Fig. 1). The central part of olivine has composition Fo85-80,
whereas narrow rim (up to 20 μm) is richer in FeO (Fo70-60).
The concentration of CaO is approximately constant (1.5-1.7 wt.%, Table
1). The composition of kirschsteinite is also variable. The earliest
zones, overgrowing olivine, have Mg# = 51-45, and most magnesian
compositions nominally belong to ferroan monticellite. The latest zones
of kirschsteinite are related to more ferroan compositions (Mg# =
40-30). In general, evolution of the olivine group minerals during
melilitolite crystallization is directed towards compositions with high
Fe and Ca: from forsterite to magnesian kirschsteinite. The similar
evolution character for olivines is also common of other melilitic
volcanic rocks around the world (Andersen et al., 2012; Melluso et al.,
2010; Platz et al., 2004; Sahama, Hytönen, 1957; 1958).
Fig. 1.
Kirschsteinite in
melilitolite of the Pian di Celle volcano, Italy (scanning microscope).
Symbols: Ol - forsteritic
olivine; Kir - kirschsteinite; Lc -leucite; Ks - kalsilite; Ne -
nepheline; Phl - fluorphlogopite; Ap - fluorapatite; Mgt - Ti-magnetite;
Cpx - clinopyroxene; Gl - glass. Numerals of analyses see Table 1.
The relationships of
olivine and kirschsteinite in melilitolites (Fig. 1) have shown that
during rock crystallization olivine was getting unstable and reacted
with high-Ca silicate melt to form kirschsteinite and other
Mg-Fe-Ca-silicates. The study of silicate-melt inclusions in minerals (Sharygin,
1999; 2001; Stoppa et al., 1997) and the presence of carbonate globules
in the groundmass glass of melilitolites are the evidences of the
existence of immiscible carbonate liquid during evolution of peralkaline
silica-undersaturated melt with high fluorine content. Namely the
occurrence of carbonate melt is seems to be responsible to the
appearance of kirschsteinite.
This work was
financially supported by Russian Foundation for Basic Research (grant
11-05-00875-a).
Table 1.
Chemical composition (wt.%) of kirschsteinite and olivine from
melilitolites of the Pian di Celle volcano.
|
Минерал |
|
SiO2 |
TiO2 |
FeO |
MnO |
MgO |
CaO |
Сумма |
Fo |
Fa |
Tph |
La |
Mg# |
18 |
Kir |
|
34.10 |
0.03 |
26.04 |
0.22 |
9.53 |
29.90 |
99.83 |
20.82 |
31.93 |
0.28 |
46.97 |
39.47 |
19 |
Kir |
|
34.49 |
0.02 |
24.00 |
0.28 |
11.27 |
29.79 |
99.86 |
24.33 |
29.08 |
0.35 |
46.24 |
45.55 |
32 |
Ol |
c |
39.21 |
0.04 |
17.59 |
0.11 |
41.66 |
1.50 |
100.10 |
79.10 |
18.74 |
0.12 |
2.04 |
80.84 |
33 |
Ol |
m |
39.16 |
0.02 |
17.22 |
0.13 |
41.78 |
1.47 |
99.78 |
79.47 |
18.38 |
0.14 |
2.01 |
81.22 |
34 |
Ol |
r |
37.34 |
0.01 |
26.90 |
0.20 |
33.67 |
1.66 |
99.79 |
67.24 |
30.15 |
0.23 |
2.38 |
69.04 |
39 |
Ol |
r |
36.77 |
0.00 |
30.43 |
0.26 |
30.95 |
1.71 |
100.12 |
62.65 |
34.57 |
0.29 |
2.49 |
64.44 |
35 |
Kir |
|
34.53 |
0.02 |
23.92 |
0.21 |
11.39 |
29.82 |
99.89 |
24.56 |
28.95 |
0.25 |
46.24 |
45.90 |
36 |
Kir |
|
34.72 |
0.00 |
22.65 |
0.16 |
12.41 |
29.81 |
99.75 |
26.60 |
27.25 |
0.20 |
45.95 |
49.40 |
37 |
Kir |
|
34.85 |
0.00 |
22.09 |
0.16 |
12.59 |
30.17 |
99.86 |
26.92 |
26.51 |
0.19 |
46.38 |
50.39 |
38 |
Kir |
|
33.47 |
0.04 |
28.50 |
0.23 |
6.82 |
30.64 |
99.70 |
15.16 |
35.56 |
0.29 |
48.98 |
29.89 |
40 |
Kir |
|
34.56 |
0.01 |
24.31 |
0.26 |
10.93 |
30.13 |
100.19 |
23.57 |
29.41 |
0.31 |
46.71 |
44.48 |
c, m, r - core, middle and
rim of grain. Fo
- forsterite, Fa
- fayalite; Tph - tephroite; La - larnite, Mg# -
Mg/(Mg+Fe).
Reference
Andersen T., Elburg M.,
Erambert M. Petrology of combeite- and götzenite-bearing nephelinite at
Nyiragongo, Virunga Volcanic Province in the East African Rift // Lithos.
2012.
Bellezza M., Merlino S.,
Perchiazzi N. Chemical and structural study of the Zr,Ti-disilicates in
the venanzite from Pian di Celle, Umbria, Italy //
European Journal of
Mineralogy. 2004. V.
16. P. 957-969.
Konev A.A., Samoilov V.S. Contact metamorphism and metasomatism in
aureole of the Tazheran alkaline intrusion.
Novosibirsk: Nauka, 1974. 246 p. (in Russian).
Melluso L.,
Conticelli S., de' Gennaro R.
Kirschsteinite
in the Capo di Bove melilite leucitite lava (cecilite), Alban Hills,
Italy // Mineralogical Magazine.
2010. V. 74. P. 887-902.
Platz T., Foley S.F.,
Andre´ L. Low-pressure fractionation of the Nyiragongo volcanic rocks,
Virunga Province, D.R. Congo // Journal of Volcanology and Geothermal
Research. 2004. V. 136. P. 269-295.
Sahama Th.G., Hytönen K.
Kirschsteinite, a natural analogue of synthetic iron monticellite, from
the Belgian Congo // Mineralogical Magazine.
1957.
V. 31.
P. 698-699.
Sahama Th.G., Hytönen K. Calcium-bearing
magnesium-iron olivines
//
American Mineralogist.
1958. V.
43.
P. 862-871.
Sharygin V.V., Boron-rich
glasses in melilitolite from Pian di Celle, Umbria, Italy // Terra
Nostra. 1999. No. 6. P. 268-270 (Abstracts of XV ECROFI, Potsdam,
Germany).
Sharygin V.V.
Silicate-carbonate liquid immiscibility in melt inclusions from
melilitolite minerals: the Pian di Celle volcano (Umbria, Italy) //
Memórias. 2001. No. 7. P. 399-402 (Abstracts of XVI ECROFI, Porto,
Portugal).
Sharygin V.V., Pekov I.V.,
Zubkova N.V., Khomyakov A.P., Stoppa F., Pushcharovsky D.Y. Umbrianite,
IMA 2011-074. CNMNC Newsletter No. 11, December 2011, p. 2892 //
Mineralogical Magazine.
2011. V. 75. No. 6. P. 2887-2893.
Sharygin V.V., Stoppa F.,
Kolesov B.A. Zr-Ti-bearing disilicates from Pian di Celle volcano
(Umbria, Italy) // European Journal of Mineralogy. 1996. V.8. P.
1199-1212.
Stoppa F.
The San Venanzo maar and
tuff-ring, Umbria, Italy: eruptive behaviour of a carbonatite-melilitite
volcano // Bulletin of Volcanology. 1995. V. 57. P. 563-567.
Stoppa F., Sharygin V.V.,
Cundari A. New mineral data from the kamafugite-carbonatite association:
the melilitolite from Pian di Celle, Italy // Mineralogy and Petrology.
1997. V. 61. P. 27-45. |