2012

News Registration Abstract submission Deadlines Excursions Accommodation Organizing committee
First circular Second circular Abstracts Seminar History Program Travel Contact us
Новости
Первый циркуляр
Второй циркуляр
Регистрация
Оформление тезисов
Тезисы
Программа
Участники
Размещение
Экскурсии
Проезд
Важные даты
Оргкомитет
Обратная связь

Тезисы международной конференции

Рудный потенциал щелочного, кимберлитового

 и карбонатитового магматизма

Abstracts of International conference

Ore potential of alkaline, kimberlite

and carbonatite magmatism

Magnesian kirschsteinite in melilitolites of the Pian di Celle volcano, Umbria, Italy

Sharygin V.V.

V.S.Sobolev Institute of Geology and Mineralogy SD RAS, Novosibirsk, Russia

sharygin@igm.nsc.ru

 

Kirschsteinite (mainly CaFeSiO4) is quite rare mineral in natural and technogenic systems. Its compositions with high Fe were found in meteorites, kimberlites. technogenic parabasalts and slags. Magnesian kirschsteinite and ferroan monticellite are most common of magmatic alkaline mafic rocks and high-temperature skarns (Andersen et al., 2012; Konev, Samoilov, 1974; Melluso et al., 2010; Platz et al., 2004; Sahama, Hytönen, 1957; 1958; Stoppa et al., 1997). This report is devoted to the finding of magnesian kirschsteinite in melilitolites of the Pian di Celle volcano, Italy. Only monticellite was previously described in melilitic rocks of this volcano (Stoppa et al., 1997).

Melilitolites represent the final event in the activity of the Pian di Celle volcano. They form peculiar pegmatoid vienlets with numerous vesicles in one of lava flows of melilitites - venanzites (Stoppa, 1995). The rocks contain coarse-grained melilite (up 5 cm), olivine, leucite, fluorophlogopite and Ti-magnetite as essential phenocrystal minerals that resembles in moda to fine-grained groundmass of the hosted venanzites. The interstices between essential phases are filled with fine-grained groundmass consisting Ti-rich magnetite, fluorapatite, fluorophlogopite, nepheline, kalsilite, clinopyroxene, Zr-Ti-disilicates, umbrianite, kirschsteinite, westerveldite, sulfides, aenigmatite, carbonate globules, and brown or green glass (Bellezza et al., 2004; Sharygin et al., 1996; 2011; Stoppa et al., 1997). Majority of the above minerals occur as well-shaped crystals in numerous rock vugs (up to 3 cm), in which the post-magmatic phases (zeolite, apophyllite, calcite, etc.) and vanadinite are also common.

Magnesian kirschsteinite was found in the groundmass, in which it is closely associated with coarse-grained olivines and sometimes forms the overgrowths around them (Fig. 1). The central part of olivine has composition Fo85-80, whereas narrow rim (up to 20 μm) is richer in FeO (Fo70-60). The concentration of CaO is approximately constant (1.5-1.7 wt.%, Table 1). The composition of kirschsteinite is also variable. The earliest zones, overgrowing olivine, have Mg# = 51-45, and most magnesian compositions nominally belong to ferroan monticellite. The latest zones of kirschsteinite are related to more ferroan compositions (Mg# = 40-30). In general, evolution of the olivine group minerals during melilitolite crystallization is directed towards compositions with high Fe and Ca: from forsterite to magnesian kirschsteinite. The similar evolution character for olivines is also common of other melilitic volcanic rocks around the world (Andersen et al., 2012; Melluso et al., 2010; Platz et al., 2004; Sahama, Hytönen, 1957; 1958).

 

 

Fig. 1. Kirschsteinite in melilitolite of the Pian di Celle volcano, Italy (scanning microscope).

Symbols: Ol - forsteritic olivine; Kir - kirschsteinite; Lc -leucite; Ks - kalsilite; Ne - nepheline; Phl - fluorphlogopite; Ap - fluorapatite; Mgt - Ti-magnetite; Cpx - clinopyroxene; Gl - glass. Numerals of analyses see Table 1.

 

The relationships of olivine and kirschsteinite in melilitolites (Fig. 1) have shown that during rock crystallization olivine was getting unstable and reacted with high-Ca silicate melt to form kirschsteinite and other Mg-Fe-Ca-silicates. The study of silicate-melt inclusions in minerals (Sharygin, 1999; 2001; Stoppa et al., 1997) and the presence of carbonate globules in the groundmass glass of melilitolites are the evidences of the existence of immiscible carbonate liquid during evolution of peralkaline silica-undersaturated melt with high fluorine content. Namely the occurrence of carbonate melt is seems to be responsible to the appearance of kirschsteinite.

 

This work was financially supported by Russian Foundation for Basic Research (grant 11-05-00875-a).

 

Table 1. Chemical composition (wt.%) of kirschsteinite and olivine from melilitolites of the Pian di Celle volcano.

 

 

Минерал

 

SiO2

TiO2

FeO

MnO

MgO

CaO

Сумма

Fo

Fa

Tph

La

Mg#

18

Kir

 

34.10

0.03

26.04

0.22

9.53

29.90

99.83

20.82

31.93

0.28

46.97

39.47

19

Kir

 

34.49

0.02

24.00

0.28

11.27

29.79

99.86

24.33

29.08

0.35

46.24

45.55

32

Ol

c

39.21

0.04

17.59

0.11

41.66

1.50

100.10

79.10

18.74

0.12

2.04

80.84

33

Ol

m

39.16

0.02

17.22

0.13

41.78

1.47

99.78

79.47

18.38

0.14

2.01

81.22

34

Ol

r

37.34

0.01

26.90

0.20

33.67

1.66

99.79

67.24

30.15

0.23

2.38

69.04

39

Ol

r

36.77

0.00

30.43

0.26

30.95

1.71

100.12

62.65

34.57

0.29

2.49

64.44

35

Kir

 

34.53

0.02

23.92

0.21

11.39

29.82

99.89

24.56

28.95

0.25

46.24

45.90

36

Kir

 

34.72

0.00

22.65

0.16

12.41

29.81

99.75

26.60

27.25

0.20

45.95

49.40

37

Kir

 

34.85

0.00

22.09

0.16

12.59

30.17

99.86

26.92

26.51

0.19

46.38

50.39

38

Kir

 

33.47

0.04

28.50

0.23

6.82

30.64

99.70

15.16

35.56

0.29

48.98

29.89

40

Kir

 

34.56

0.01

24.31

0.26

10.93

30.13

100.19

23.57

29.41

0.31

46.71

44.48

c, m, r - core, middle and rim of grain. Fo - forsterite, Fa - fayalite; Tph - tephroite; La - larnite, Mg# - Mg/(Mg+Fe).

 

Reference

Andersen T., Elburg M., Erambert M. Petrology of combeite- and götzenite-bearing nephelinite at Nyiragongo, Virunga Volcanic Province in the East African Rift // Lithos. 2012.

Bellezza M., Merlino S., Perchiazzi N. Chemical and structural study of the Zr,Ti-disilicates in the venanzite from Pian di Celle, Umbria, Italy // European Journal of Mineralogy. 2004. V. 16. P. 957-969.

Konev A.A., Samoilov V.S. Contact metamorphism and metasomatism in aureole of the Tazheran alkaline intrusion. Novosibirsk: Nauka, 1974. 246 p. (in Russian).

Melluso L., Conticelli S., de' Gennaro R. Kirschsteinite in the Capo di Bove melilite leucitite lava (cecilite), Alban Hills, Italy // Mineralogical Magazine. 2010. V. 74. P. 887-902.

Platz T., Foley S.F., Andre´ L. Low-pressure fractionation of the Nyiragongo volcanic rocks, Virunga Province, D.R. Congo // Journal of Volcanology and Geothermal Research. 2004. V. 136. P. 269-295.

Sahama Th.G., Hytönen K. Kirschsteinite, a natural analogue of synthetic iron monticellite, from the Belgian Congo // Mineralogical Magazine. 1957. V. 31. P. 698-699.

Sahama Th.G., Hytönen K. Calcium-bearing magnesium-iron olivines // American Mineralogist. 1958. V. 43. P. 862-871.

Sharygin V.V., Boron-rich glasses in melilitolite from Pian di Celle, Umbria, Italy // Terra Nostra. 1999. No. 6. P. 268-270 (Abstracts of XV ECROFI, Potsdam, Germany).

Sharygin V.V. Silicate-carbonate liquid immiscibility in melt inclusions from melilitolite minerals: the Pian di Celle volcano (Umbria, Italy) // Memórias. 2001. No. 7. P. 399-402 (Abstracts of XVI ECROFI, Porto, Portugal).

Sharygin V.V., Pekov I.V., Zubkova N.V., Khomyakov A.P., Stoppa F., Pushcharovsky D.Y. Umbrianite, IMA 2011-074. CNMNC Newsletter No. 11, December 2011, p. 2892 // Mineralogical Magazine. 2011. V. 75. No. 6. P. 2887-2893.

Sharygin V.V., Stoppa F., Kolesov B.A. Zr-Ti-bearing disilicates from Pian di Celle volcano (Umbria, Italy) // European Journal of Mineralogy. 1996. V.8. P. 1199-1212.

Stoppa F. The San Venanzo maar and tuff-ring, Umbria, Italy: eruptive behaviour of a carbonatite-melilitite volcano // Bulletin of Volcanology. 1995. V. 57. P. 563-567.

Stoppa F., Sharygin V.V., Cundari A. New mineral data from the kamafugite-carbonatite association: the melilitolite from Pian di Celle, Italy // Mineralogy and Petrology. 1997. V. 61. P. 27-45.