Variations
in mineral composition of
lamprophyllite malinitovom
in stock.
Akimenko
M.I.
(akimenko.alkaline@gmail.com),
Sorokhtina N.V.,
Asavin A.M.,
Kononkova N.N.
(Vernadsky
Institute, Moscow)
Malignite
rod has been studied. There is represented as elongated, rounded body,
which drilled by hole to a depth oh 94 m. Rock is consist of nepheline,
feldspar,
arfvedsonite,
aenigmatite, lamprophyllite, astrophyllite, shcherbakovite, sodalite,
aegirine-augite, ilmenite, goethite, rhodochrosite.
The
mineral composition
was
analyzed by
Electron Micro Probe Analyzer Cameca SX-100.
There are two generations of lamprophyllite (Fig. 1, 2): euhedral pale
yellow crystals and large xenomorphic crystals that are deep yellow.
Each generation is characterized by zone structure of the grains:
strontium-rich core and a boundary of barium (Fig. 3), at the same time
lamprophyllite II generation is more barium (Ba/Sr > 1) (table 2), while
for lamprophyllite I Ba/Sr < 1. Rock chemical analysis showed the
changing content of strontium to the well, in the range of 25, 65 - 80,6
m it increases significantly, while the content of barium remains
constant (Fig.4).
|
|
Fig.
1. Lamprophyllite I
generation develops
enigmatite, lamprophyllite
II generation
"corrodes"
lamprophyllite I. |
Fig.
2. Lamprophyllite
II generation
"corrodes"
lamprophyllite I and
generation
arfvedsonite II. |
Table
1. Chemical composition
(wt%) lamprophyllite
I generation
Na2O |
10.05 |
10 |
10.29 |
9.83 |
10.43 |
10.08 |
10.84 |
10.46 |
10.36 |
K2O |
1.44 |
1.56 |
1.4 |
2.12 |
1.72 |
1.76 |
1.42 |
1.58 |
1.68 |
CaO |
0.8 |
0.81 |
1.05 |
0.82 |
1.06 |
1.02 |
0.99 |
0.77 |
1.02 |
SrO |
8.71 |
8.75 |
12.57 |
8.71 |
9.6 |
9.32 |
11.98 |
10.62 |
10.88 |
BaO |
9 |
10.58 |
6.71 |
11.42 |
7.67 |
9.63 |
7.07 |
10.13 |
8.64 |
MgO |
1.36 |
1.31 |
1.36 |
0.96 |
1.09 |
1.36 |
1.26 |
1.32 |
1.17 |
MnO |
0.54 |
0.63 |
0.61 |
0.71 |
0.8 |
0.79 |
0.66 |
0.61 |
0.74 |
SiO2 |
29.29 |
29.04 |
30.12 |
29.46 |
29.9 |
29.84 |
30.61 |
30.06 |
30.5 |
Al2O3 |
0.22 |
0.2 |
0.16 |
0.18 |
0.15 |
0.18 |
0.18 |
0.18 |
0.18 |
TiO2 |
26.78 |
26.75 |
29.23 |
27.99 |
28.75 |
27.63 |
28.49 |
27.59 |
29.14 |
FeO |
4.01 |
4.1 |
4.45 |
4.37 |
4.7 |
5.05 |
4.72 |
4.23 |
4.67 |
ZrO2 |
0.27 |
0.3 |
0.19 |
0.41 |
0.15 |
0.18 |
0.04 |
0.32 |
0.06 |
Nb2O5 |
0.65 |
0.44 |
0.14 |
0.78 |
0.14 |
0.06 |
0.12 |
0.79 |
0.12 |
Ta2O5 |
|
0.07 |
0.03 |
0.04 |
0.16 |
0.07 |
0.11 |
0.21 |
0.06 |
ThO2 |
|
0.05 |
0.24 |
|
0.09 |
|
0.05 |
0.08 |
|
UO2 |
0.25 |
0.32 |
0.17 |
0.32 |
0.25 |
0.19 |
0.27 |
0.18 |
0.13 |
F |
2.45 |
2.59 |
2.31 |
2.91 |
2.22 |
3.22 |
2.59 |
1.36 |
2.41 |
Total |
95.83 |
97.5 |
101.03 |
101.03 |
98.88 |
100.38 |
101.42 |
100.49 |
101.76 |
Ba/Sr
(Apfu.) |
0.69 |
0.81 |
0.36 |
0.88 |
0.53 |
0.69 |
0.39 |
0.64 |
0.53 |
Table
2. Chemical composition
(wt%) lamprophyllite II
generation
Na2O |
K2O |
CaO |
SrO |
BaO |
MgO |
MnO |
SiO2 |
Al2O3 |
TiO2 |
FeO |
ZrO2 |
Nb2O5 |
Ta2O5 |
ThO2 |
UO2 |
F |
Сумма |
Ba/Sr (ф.е.) |
9.24 |
3.07 |
0.73 |
4.21 |
16.03 |
0.58 |
0.51 |
29.09 |
0.24 |
27.29 |
4.26 |
0.09 |
1.05 |
|
0.01 |
0.5 |
2.03 |
98.93 |
2.57 |
9.05 |
3.06 |
0.73 |
4.62 |
16.08 |
0.55 |
0.39 |
29.62 |
0.48 |
26.94 |
5.26 |
0.04 |
0.85 |
|
0.02 |
0.56 |
1.68 |
99.93 |
2.35 |
7.43 |
3.36 |
0.9 |
5.73 |
12.19 |
0.53 |
0.92 |
30.5 |
0.21 |
29.29 |
5.64 |
0.12 |
0.4 |
|
|
0.66 |
2.31 |
100.19 |
1.43 |
7.57 |
3.02 |
0.78 |
5.62 |
13.96 |
0.65 |
0.78 |
29.94 |
0.45 |
28.52 |
5.38 |
0.06 |
0.13 |
0.05 |
|
0.57 |
2 |
99.48 |
1.67 |
8.56 |
2.4 |
0.75 |
6.61 |
10.57 |
0.95 |
0.92 |
32.29 |
0.38 |
25.82 |
9.27 |
0.05 |
0.13 |
|
|
0.41 |
1.87 |
101 |
1.08 |
9.74 |
2.57 |
0.91 |
6.7 |
14.62 |
0.64 |
0.79 |
29.46 |
0.22 |
27.47 |
4.82 |
0.14 |
0.36 |
0.1 |
0.05 |
0.35 |
2.28 |
101.22 |
1.47 |
Fig.
3. Content of SrO
and BaO
in lamprophyllite
from depths of 7, 17,
51, m (brown colored
rim of the grains,
blue – central zone).
Fig.
4 Change in the
contents of Ba and Sr (ppm) on the borehole (m).
Minor
changes to
the contents of Ba and
Sr in
malignite
throughout the depth,
leaves the controversial
question of the processes
leading to the evolution of
the composition
lamprophyllite.
On this issue in the
literature, there are several point of views
the evolution of the
compositions
lamprophyllite
associated with the
accumulation
of barium in the melt
during the evolution of the
magma [1] or to
changes in postmagmatic
breed, which
took place during the
enrichment and accumulation
of barium in
lamprophyllite
[2].
References:
1.
Zaitsev
V.A, Thesis for the degree of Candidate of Geological and Mineralogical
Sciences, ,
Peculiarities of chemical composition and formation conditions of
minerals and titanite lamprophyllite in the Lovozero massif, Kola
Peninsula, Moscow, 2005.
2.
Azarova,
J.V. Genesis and several minerals typomorphism
lamprofilit-baritolamprofillit of complex lujaurite-malinitov Khibiny
massif, New data on minerals,., 2004. |