2012

News Registration Abstract submission Deadlines Excursions Accommodation Organizing committee
First circular Second circular Abstracts Seminar History Program Travel Contact us
Новости
Первый циркуляр
Второй циркуляр
Регистрация
Оформление тезисов
Тезисы
Программа
Участники
Размещение
Экскурсии
Проезд
Важные даты
Оргкомитет
Обратная связь

Тезисы международной конференции

Рудный потенциал щелочного, кимберлитового

 и карбонатитового магматизма

Abstracts of International conference

Ore potential of alkaline, kimberlite

and carbonatite magmatism

Variations in mineral composition of lamprophyllite malinitovom in stock.

Akimenko M.I. (akimenko.alkaline@gmail.com), Sorokhtina N.V., Asavin A.M., Kononkova N.N.

(Vernadsky Institute, Moscow)

 

Malignite rod has been studied. There is represented as elongated, rounded body, which drilled by hole to a depth oh 94 m. Rock is consist of nepheline, feldspar, arfvedsonite, aenigmatite, lamprophyllite, astrophyllite, shcherbakovite, sodalite, aegirine-augite, ilmenite, goethite, rhodochrosite.

The mineral composition was analyzed by Electron Micro Probe Analyzer Cameca SX-100. There are two generations of lamprophyllite (Fig. 1, 2): euhedral pale yellow crystals and large xenomorphic crystals that are deep yellow. Each generation is characterized by zone structure of the grains: strontium-rich core and a boundary of barium (Fig. 3), at the same time lamprophyllite II generation is more barium (Ba/Sr > 1) (table 2), while for lamprophyllite I Ba/Sr < 1. Rock chemical analysis showed the changing content of strontium to the well, in the range of 25, 65 - 80,6 m it increases significantly, while the content of barium remains constant (Fig.4).

 

Fig. 1. Lamprophyllite I generation develops enigmatite, lamprophyllite II generation "corrodes" lamprophyllite I.

Fig. 2. Lamprophyllite II generation "corrodes" lamprophyllite I and generation arfvedsonite II.

 

Table 1. Chemical composition (wt%) lamprophyllite I generation

Na2O

10.05

10

10.29

9.83

10.43

10.08

10.84

10.46

10.36

K2O

1.44

1.56

1.4

2.12

1.72

1.76

1.42

1.58

1.68

CaO

0.8

0.81

1.05

0.82

1.06

1.02

0.99

0.77

1.02

SrO

8.71

8.75

12.57

8.71

9.6

9.32

11.98

10.62

10.88

BaO

9

10.58

6.71

11.42

7.67

9.63

7.07

10.13

8.64

MgO

1.36

1.31

1.36

0.96

1.09

1.36

1.26

1.32

1.17

MnO

0.54

0.63

0.61

0.71

0.8

0.79

0.66

0.61

0.74

SiO2

29.29

29.04

30.12

29.46

29.9

29.84

30.61

30.06

30.5

Al2O3

0.22

0.2

0.16

0.18

0.15

0.18

0.18

0.18

0.18

TiO2

26.78

26.75

29.23

27.99

28.75

27.63

28.49

27.59

29.14

FeO

4.01

4.1

4.45

4.37

4.7

5.05

4.72

4.23

4.67

ZrO2

0.27

0.3

0.19

0.41

0.15

0.18

0.04

0.32

0.06

Nb2O5

0.65

0.44

0.14

0.78

0.14

0.06

0.12

0.79

0.12

Ta2O5

 

0.07

0.03

0.04

0.16

0.07

0.11

0.21

0.06

ThO2

 

0.05

0.24

 

0.09

 

0.05

0.08

 

UO2

0.25

0.32

0.17

0.32

0.25

0.19

0.27

0.18

0.13

F

2.45

2.59

2.31

2.91

2.22

3.22

2.59

1.36

2.41

Total

95.83

97.5

101.03

101.03

98.88

100.38

101.42

100.49

101.76

Ba/Sr (Apfu.)

0.69

0.81

0.36

0.88

0.53

0.69

0.39

0.64

0.53

 

 Table 2. Chemical composition (wt%) lamprophyllite II generation

Na2O

K2O

CaO

SrO

BaO

MgO

MnO

SiO2

Al2O3

TiO2

FeO

ZrO2

Nb2O5

Ta2O5

ThO2

UO2

F

Сумма

Ba/Sr (ф.е.)

9.24

3.07

0.73

4.21

16.03

0.58

0.51

29.09

0.24

27.29

4.26

0.09

1.05

 

0.01

0.5

2.03

98.93

2.57

9.05

3.06

0.73

4.62

16.08

0.55

0.39

29.62

0.48

26.94

5.26

0.04

0.85

 

0.02

0.56

1.68

99.93

2.35

7.43

3.36

0.9

5.73

12.19

0.53

0.92

30.5

0.21

29.29

5.64

0.12

0.4

 

 

0.66

2.31

100.19

1.43

7.57

3.02

0.78

5.62

13.96

0.65

0.78

29.94

0.45

28.52

5.38

0.06

0.13

0.05

 

0.57

2

99.48

1.67

8.56

2.4

0.75

6.61

10.57

0.95

0.92

32.29

0.38

25.82

9.27

0.05

0.13

 

 

0.41

1.87

101

1.08

9.74

2.57

0.91

6.7

14.62

0.64

0.79

29.46

0.22

27.47

4.82

0.14

0.36

0.1

0.05

0.35

2.28

101.22

1.47

 

Fig. 3.  Content of SrO and  BaO in lamprophyllite from depths of 7, 17, 51, m (brown colored rim of the grains, blue – central zone).

Fig. 4 Change in the contents of Ba and Sr (ppm) on the borehole (m).

 

Minor changes to the contents of Ba and Sr in malignite throughout the depth, leaves the controversial question of the processes leading to the evolution of the composition lamprophyllite. On this issue in the literature, there are several point of views the evolution of the compositions lamprophyllite associated with the accumulation of barium in the melt during the evolution of the magma [1] or to changes in postmagmatic breed, which took place during the enrichment and accumulation of barium in lamprophyllite [2].

 

 References:

1.                   Zaitsev V.A, Thesis for the degree of Candidate of Geological and Mineralogical Sciences, , Peculiarities of chemical composition and formation conditions of minerals and titanite lamprophyllite in the Lovozero massif, Kola Peninsula, Moscow, 2005.

2.                    Azarova, J.V. Genesis and several minerals typomorphism lamprofilit-baritolamprofillit of complex lujaurite-malinitov Khibiny massif, New data on minerals,., 2004.