2011

News Registration Abstract submission Deadlines Excursions Accommodation Organizing committee
First circular Second circular Abstracts Seminar History Program Travel Contact us
Новости
Первый циркуляр
Второй циркуляр
Регистрация
Оформление тезисов
Тезисы
Программа
Участники
Размещение
Экскурсии
Проезд
Важные даты
Оргкомитет
Обратная связь

Тезисы международной конференции

Рудный потенциал щелочного, кимберлитового

 и карбонатитового магматизма

Abstracts of International conference

Ore potential of alkaline, kimberlite

and carbonatite magmatism

   

Zinc in ilmenite-group minerals from Dmitrovka metasomatites, Azov region, Ukraine

Sharygin V.V.*, Kryvdik S.G.**

* V.S. Sobolev Institute of Geology and Mineralogy SB RAS, Novosibirsk, Russia; ** N.P. Semenenko Institute of Geochemistry, Mineralogy and Ore Formation NAS of Ukraine, Kyiv, Ukraine

sharygin@igm.nsc.ru

 

In the Dmitrovka open pit (north-east exocontact of the Oktyabrsky Massif) alkali metasomatites form a zone with north-east strike in the Anadol complex granites. The thickness of individual metasomatic bodies within this zone may be up some meters (Shcherbak et al., 1994). The ilmenite-group minerals (ilmenite, pyrophanite, ecandrewsite) were observed as accessory phases in four samples of leucocratic aegirine albitites, which are variable in the suite and amounts of mafic minerals (aegirine, arfvedsonite, fluorphlogopite, annite, astrophyllite-kupletskite) (Kryvdik et al., 2010; 2011; Sharygin, Kryvdik, 2010). They commonly form large individual grains (up to 200-300 μm) sometimes rimmed by leucoxene aggregate and rarely occur as inclusions (20-40 μm) in aegirine, zircon and K-feldspar. Crystal inclusions in their grains are represented by zircon, aegirine, pyrochlore, albite, basnaesite -(Ce) and monazite-(Ce). Leucoxene is submicron-size aggregate, in which individual/relics of ilmenite-pyrophanite-ecandrewsite and new-formed Fe-niobates (columbite ?) are sometimes visible. Rutile with variable Nb and Fe are commonly localized in outer zone of leucoxene on the contact with other minerals. The phase relationships in the Dmitrovka metasomatites are evidences that the ilmenite-group minerals are products of early crystallization whereas formation of leucoxene is related to later processes. It should be noted that Zn-containing ilmenite and pyrophanite as well as ecandrewsite are common constituents of metasomatized granites, high-grade metapelites and latest rocks of peralkaline complexes (Sakoma, Martin, 2002; Mitchell, Liferovich, 2004 and references herein; Rao et al., 2008; Prochazka et al., 2010).

Microprobe and scanning microscope have shown that majority of grains are zoned and have broad variations in Fe, Mn and Zn at approximately constant content of Nb (0.5-2.0 wt.% Nb2O5). All metasomatite samples contain Mn-ilmenite with the predominance of Fe over Mn. Both Fe-pyrophanite and Mn-ilmenite occur only in sample DM-7 (Table 1, Fig. 1). Ilmenite from two samples (Dm-8, DM-Astr) is characterized by low content of ZnO (0.1-2 wt.%). Zoning in large individual grains is expressed in gradual increase of ZnO from core to rim (from 1-3 up to 10-16, sometimes up to 23 wt.%). The outermost parts with maximal content of Zn already belong to Fe-Mn-ecandrewsite (Fig. 1). In general, zoning character in ilmenite and pyrophanite is slightly different. Isomorphism Fe->Zn predominates in ilmenite, whereas (Fe,Mn)->Zn is common of pyrophanite. Small individuals (1-5 μm) of new-formed ecandrewsite are sometimes localized on the boundary of ilmenite/pyrophanite and leucoxene aggregate.

 

Table 1. Representative analyses of the ilmenite-group minerals from the Dmitrovka apogranite metasomatites.

Sample

DM-8

DM-10

 

 

 

 

DM-7

 

DM-7

 

 

DM-Astr

Position

c

c

m

m

r

or

c

or

c

m

r

c

r

TiO2

52.33

52.18

51.75

51.77

51.80

51.29

52.13

51.86

52.36

52.38

51.73

52.19

52.21

Nb2O5

0.86

0.97

0.98

1.02

1.03

0.75

0.91

0.87

1.19

1.07

1.15

1.54

0.98

Ta2O5

0.05

0.03

 

0.01

0.17

0.13

 

 

 

0.02

0.19

0.04

0.05

V2O3

 

0.00

0.00

0.00

0.00

0.00

0.05

0.06

0.04

0.00

0.04

 

 

FeOt

34.77

33.43

32.48

31.12

25.42

16.10

16.30

11.22

13.71

9.95

13.62

38.83

30.19

MnO

10.28

11.80

12.01

10.95

10.48

11.68

26.77

25.63

32.29

35.49

27.30

7.01

16.29

MgO

0.03

0.02

0.00

0.00

0.02

0.00

0.02

0.00

0.02

0.02

0.03

0.00

0.01

ZnO

1.76

1.81

2.61

4.85

11.22

20.26

4.07

10.38

0.47

1.01

5.91

0.24

0.09

Sum

100.08

100.24

99.83

99.72

100.14

100.21

100.24

100.03

100.08

99.94

99.98

99.85

99.82

mole %

 

 

 

 

 

 

 

 

 

 

 

 

 

FeTiO3

74.43

71.18

69.18

66.94

55.36

35.14

34.71

24.21

29.33

21.34

29.39

84.16

64.57

MnTiO3

22.25

25.42

25.91

23.85

23.09

25.82

57.65

56.01

69.79

76.76

59.40

15.39

35.26

ZnTiO3

3.32

3.40

4.91

9.21

21.55

39.04

7.64

19.78

0.89

1.90

11.21

0.45

0.17

c, m, r, or - core, middle, rim and outermost part of grain. ZrO2 and Al2O3 are below detection limits.

 

Leucoxene also strongly varies in composition (in wt.%): SiO2 - 0.5-1.1; TiO2 - 58.3-65.8; Nb2O5 - 0.6-2.1; Al2O3 - 0-0.3; FeOt - 11.6-24.6; MnO - 0.7-2.1; ZnO - 1.8-19.9. In general, it conventionally corresponds to Zn-rich compositions from pseudorutile Fe3+2Ti3O9 to Fe3+-rich “ferropseudobrookite” (Fe2+0.5Fe3+0.5)(Ti1.5Fe3+0.5)O5. Low sums (92-97 wt.%) suggest the presence of kleberite Fe3+2-xTi3O9-3x(OH)3x, hydrated species of pseudorutile (Grey et al., 1994). Composition of leucoxene strongly depends on composition of primary ilmenite-group mineral. Low content of MnO and presence of SiO2 are common of all leucoxenes, even for aggregate replacing pyrophanite. Ilmenite is more stable phase than pyrophanite for replacement by leucoxene. Zn-enriched leucoxene was previously observed in partly metasomatized granitoids from Nigeria and Czech Republic (Sakoma, Martin, 2002; Prochazka et al., 2010). Its appearance around primary ilmenite is related to the H2O presence and fO2 increasing during metasomatism.

 

Fig. 1. The ilmenite-group minerals from the Dmitrovka metasomatites on the diagram Fe-Mn-Zn (mole %).

 

The melanocratic minerals in the Dmitrovka metasomatites also contain Zn, but its concentration in them is essentially lower (in wt.%): astrophyllite - 0.4-1.0; kupletskite - 1.4-1.8; arfvedsonite - 0.3-1.3; annite - 0.5-0.7; fluorphlogopite - 1.7-1.9; aegirine - 0.05-0.15 (Krivdik et al., 2010; 2011; Khomenko, Vyshnevskii, 2010; Sharygin, Kryvdik, 2010). Thus, the ilmenite-group minerals and their alteration products are main careers for Zn in the Dmitrovka leucocratic metasomatites. In addition to leucocratic species veined melanocratic metasomatites enriched in aegirine, arfvedsonite and molybdenite occur in the Dmirovka open pit. These rocks contain remarkable concentrations of Zn (90-540 ppm) (Mikhailov, Shun’ko, 2002). Sphalerite has been identified in them by optical method, and this mineral seems to be a sole career for Zn.

Previous studies for dike peralkaline phonolites of the Oktyabrsky Massif have shown that kupletskite and micas are the main phases to accumulate Zn (Sharygin, 2009; Sharygin et al., 2009). The Dmitrovka metasomatites are characterized by another type of Zn mineralization: in the lack of sulfides it is localized in early titanates, and on the late stages - in small amounts in phyllosilicates (micas, kupletskite-astrophyllite) and arfvedsonite. In sulfur-rich environments sphalerite is the main phase to accumulate Zn.

 

Литература:

Grey I.E., Watts J.A., Bayliss P. Mineralogical nomenclature - pseudorutile revalidated and neotype given // Mineralogical Magazine. 1994. Vol. 58. P. 597-600.

Khomenko V., Vyshnevskii O. Astrophyllite from alkaline metasomatized rocks (Dmytrivka, Azov region): crystal chemistry, spectroscopy, inclusions // In: Alkaline rocks: petrology, mineralogy, geochemistry. Abstracts and excursion guide of Conference dedicated to the memory of J.A.Morozewicz. Kyiv. 2010. P. 34-35.

Kryvdik S.G., Morgun V.G., Sharygin V.V. Micas from fenites and alkaline metasomatites of eastern Azov region // Mineralogical Journal (Ukraine). 2010. V. 32. No. 4, P. 3-11.

Kryvdik S.G., Sharygin V.V., Morgun V.G. Astrophyllite-group minerals from Azov region, Ukraine // This volume. 2011.

Mikhailov V.A., Shun’ko V.V. New type of molybdenum mineralization for Ukrainian Shield // Reports of the National Academy of Science of Ukraine. 2002. No. 6. P. 137-140.

Mitchell R.H., Liferovich R.P. Ecandrewsite - zincian pyrophanite from lujavrite, Pilansberg alkaline complex, South Africa // Canadian Mineralogist. 2004. Vol. 42. P. 1169-1178.

Prochazka V., Uher P, Matejka D. Zn-rich ilmenite and pseudorutile: subsolidus products in peraluminous granites of the Melechov Massif, Moldanubian Batholith, Czech Republic // Neues Jahrbuch für Mineralogie Abhandlungen. 2010. Vol. 187. Iss. 3. P. 249-263.

Rao M.J., Raj A.A.J., Paul K.J. Ocurrence of zincian ilmenite from Srikurman placer sand deposit, Andra Pradesh, India // Current Science. 2008. Vol. 95. No. 9-10. P. 1124-1127.

Sakoma E.M., Martin R.F.. Oxidation-induced postmagmatic modifications of primary ilmenite, NYG-related aplite dyke, Tibchi complex, Kalato, Nigeria // Mineralogical Magazine. 2002. Vol. 66. P. 591-604.

Sharygin V.V. New minerals and mineral species in the Azov region: Oktyabrsky Massif // Transactions of UkrNDMI NAS Ukraine. 2009. Iss. 5. Part 2. P. 132-139.

Sharygin V., Kryvdik S. Behavior of Zn in late magmatic and metasomatic rocks of the Oktyabrsky alkaline massif, Azov region, Ukraine: mineralogical data // In: Alkaline rocks: petrology, mineralogy, geochemistry. Abstracts and excursion guide of Conference dedicated to the memory of J.A.Morozewicz. Kyiv. 2010. P. 58-59.

Sharygin V.V., Kryvdik S.G., Pospelova L.N., Dubyna A.V. Zn-kupletskite and hendricksite in the agpaitic phonolites of the Oktyabrskii massif, Azov region, Ukraine // Doklady Earth Sciences. 2009. V. 425A. No. 3. P. 499-504.

Shcherbak D.N., Shun’ko V.V., Zagnitko B.M. New data on age relations for albitites and granites of Anadol Complex // Doklady Akademii nauk Ukrainy. 1994. No. 6. P. 131-135.