2011

News Registration Abstract submission Deadlines Excursions Accommodation Organizing committee
First circular Second circular Abstracts Seminar History Program Travel Contact us
Новости
Первый циркуляр
Второй циркуляр
Регистрация
Оформление тезисов
Тезисы
Программа
Участники
Размещение
Экскурсии
Проезд
Важные даты
Оргкомитет
Обратная связь

Тезисы международной конференции

Рудный потенциал щелочного, кимберлитового

 и карбонатитового магматизма

Abstracts of International conference

Ore potential of alkaline, kimberlite

and carbonatite magmatism

   

Ba-Ti-rich micas from alkali Si-undersaturated rocks of the Calatrava volcanic field, Central Spain

Sharygin V.V.*, Schiazza M.**, Stoppa F.**

* V.S.Sobolev Institute of Geology and Mineralogy SB RAS, Novosibirsk, Russia; ** Dipartimento di Scienze, Gabriele d'Annunzio University, Chieti, Italy

sharygin@igm.nsc.ru

 

The Miocene-Pliocene volcanism of the Calatrava field consists of over 200 monovolcanic centres which activity has been essentially explosive (Ancochea, 1999). It is represented by alkaline Si-undersaturated rocks (from tephritic nephelinite to olivine melilitite) and carbonatites (Ancochea, 1999, Cebriá, 1992; Lópes-Ruiz et al., 1993; Cebriá, Lópes-Ruiz, 1995; Bailey et al., 2005; Stoppa et al., 2011). These rocks contain abundant phenocrysts (up to 30 vol.%) of olivine and clinopyroxene. The groundmass of rocks consists of olivine, clinopyroxene, Ti-magnetite, fluorapatite as principal minerals and melilite, foids or feldspars. Depending on rock types the groundmass may bear melilite, leucite, nepheline, K-feldspar or plagioclase. Ba-Ti-mica, ilmenite, sodalite and perovskite occur rarely. The first data about the presence and chemistry of Ti-rich micas (without Ba determination) in groundmass of some Calatrava rocks (Morrón de Villamayor, Romani, Los Santos and Las Tontas) were previously given by Cebriá (1992).

Here we present new microprobe data for Ba-Ti-micas from some localities of the Calatrava volcanic field. Among all rock collection from Calatrava micas were found only in five samples from Morrón de Villamayor, Cuevas Negras, Asdrubal, La Vaquerizia and Colada de Ojailén. In all studied samples mica occurs as groundmass minerals and sometimes contains abundant inclusions of principal groundmass minerals. It should be noted that groundmass micas enriched in both Ba and Ti were previously described in alkali mafic rocks around the world (Mansker et al., 1979; Edgar, 1992; Zhang et al., 1993; Seifert, Kampf, 1994; Dunworth, Wilson, 1998; Greenwood, 1998; Kogarko et al., 2005; Sharygin, 2009; Sharygin, Kryvdik, 2010).

Microprobe data indicate strongly variable composition of micas in content of BaO (0.2-22.6 wt.%) and TiO2 (7.7-13.0 wt.%) (Table 1). In general, most mica grains from particular rock do not show significant variations in chemical composition. The core-to-rim variations in some grains indicate the slight enrichment in BaO and depletion in K2O. The reverse scheme also occurs. The compositions poorer in BaO (0.2-2.1 wt.%) and TiO2 (7.7-9.1 wt.%) are typical of tephritic nephelinite from Colada de Ojailén whereas the high coupled enrichment in BaO and TiO2 (up to 22.6 and 13.0 wt.%) is common of olivine melililite (La Vaquerizia) and olivine nephelinite (Asdrubal).

 

Table 1. Representative analyses (EMPA, wt.%) of Ba-Ti-micas from the Calatrava rocks.

Sample

Ca-365

 

Ca-365

 

Ca-373

Ca-373

Ca-344

 

Ca-344

 

Ca-389

Ca-389

Ca-362

 

Ca-362

 

Position

c

r

c

r

 

 

c

r

c

r

 

 

c

r

c

r

n

3

3

3

2

5

1

1

1

1

3

1

2

2

1

1

2

SiO2

23.94

23.03

24.67

23.73

24.45

21.10

35.84

34.84

34.99

33.52

36.17

37.81

29.65

27.28

28.51

29.52

TiO2

12.48

12.16

11.72

11.96

12.32

12.39

8.26

8.51

8.42

8.96

8.18

8.54

10.39

10.42

9.37

8.73

Nb2O5

0.22

0.57

0.08

0.16

0.03

 

0.00

0.05

 

0.06

0.05

0.08

0.09

 

 

0.12

Cr2O3

0.03

0.03

0.07

 

0.02

0.00

 

 

0.05

0.02

 

0.36

0.00

0.01

0.00

0.03

Al2O3

17.13

18.49

16.79

17.06

17.13

18.66

13.80

14.10

13.95

14.51

13.60

12.52

14.32

14.71

15.51

14.58

Fe2O3*

2.02

1.32

2.26

2.46

0.54

2.66

0.04

0.80

0.94

1.21

0.58

0.44

2.15

3.78

2.57

3.19

FeO*

10.45

9.76

9.45

9.77

9.58

7.69

7.74

7.20

6.95

6.87

12.17

11.36

9.77

9.01

7.74

6.75

MnO

0.16

0.13

0.16

0.19

0.14

0.11

0.05

0.06

0.04

0.09

0.13

0.13

0.15

0.15

0.14

0.12

ZnO

0.00

0.00

0.00

0.04

0.00

 

0.06

0.00

 

0.00

0.01

0.03

0.00

 

 

0.02

MgO

10.57

11.26

11.77

11.13

10.84

11.77

17.56

17.52

17.85

17.22

14.95

15.24

13.18

13.09

15.16

16.23

CaO

0.15

0.17

0.10

0.11

0.34

0.45

0.01

0.06

0.04

0.03

0.08

0.11

0.14

0.09

0.10

0.08

BaO

18.88

20.24

18.05

19.85

21.46

22.55

4.58

6.06

6.05

7.27

2.07

0.55

13.57

15.32

13.70

13.04

Na2O

0.22

0.12

0.25

0.20

0.17

0.14

0.80

0.85

0.74

0.70

0.90

0.72

0.26

0.40

0.29

0.29

K2O

2.74

2.35

3.14

2.67

1.83

1.61

7.72

7.34

7.40

7.09

8.82

9.47

5.00

4.37

5.03

5.28

Rb2O

0.05

0.00

0.05

0.00

0.03

0.11

 

 

0.08

0.00

 

0.00

0.00

0.00

0.08

0.03

F

1.02

1.01

1.17

1.23

0.94

0.93

3.11

3.15

3.01

2.93

2.01

1.45

2.16

2.12

2.72

2.95

Cl

0.01

0.01

0.01

 

0.01

0.00

 

 

0.00

0.00

 

0.01

0.00

0.00

0.02

0.01

H2O*

0.73

0.71

0.93

0.82

0.31

1.02

0.82

0.90

0.98

0.97

1.68

1.66

0.66

1.05

0.97

1.00

Sum

100.81

101.37

100.67

101.38

100.15

101.19

100.39

101.43

101.48

101.43

101.39

100.47

101.47

101.80

101.90

101.95

O-(F,Cl)2

0.43

0.43

0.50

0.52

0.40

0.39

1.31

1.33

1.27

1.23

0.85

0.61

0.91

0.89

1.15

1.24

Sum

100.38

100.94

100.17

100.86

99.75

100.79

99.08

100.10

100.21

100.20

100.55

99.86

100.56

100.90

100.75

100.71

Note: c, r - core and rim of grains; * - calculated from formula on the basis of 8 cations and 24 negative charges, Fe2O3 is estimated only as tetrahedral Fe3+ in formula. Ca-365 - olivine nephelinite, Asdrubal; Ca-373 - olivine melilitite, La Vaquerizia; Ca-344 - olivine leucitite, Morrón de Villamayor; Ca-389 - tephritic nephelinite, Villaneueva de San Carlos, Colada de Ojailén; Ca-362 - olivine nephelinite, Cuevas Negras.

 

To calculate formula for Ba-Ti-rich micas from Calatrava we used method on the basis of 8 cations and 24 negative charges, assuming an ideal variant when there are no vacancies in the octahedral and K sites. This method allows estimating maximal H2O content (in the case when it did not analyze) and can not calculate octahedral Fe3+. Henderson and Foland (1996) previously indicated that cation-site deficiencies commonly reported for very Ba-Ti-rich micas in alkaline, basic igneous rocks may be artefacts of using 11-oxygen formulae rather than taking account of major replacement of excess O2- for OH- (oxymica substitution).

Figure 1. Ba-Ti-micas from Calatrava on the classification diagram (author’s variant).

 

To identify the Calatrava Ba-Ti-micas we plotted their compositions on the classification diagram with ideal end-members (phlogopite - kinoshitalite - oxykinoshitalite - oxyphlogopite, Fig. 1) what has been available after the discovery of oxykinoshitalite and oxyphlogopite (Kogarko et al., 2005; Chukanov et al., 2010). According to this classification most micas from Colada de Ojailén and Morrón de Villamayor is titanian phlogopite; mineral from Cuevas Negras - barian oxyphlogopite, which is essentially higher in Ba than holotype (Chukanov et al., 2010); and micas from La Vaquerizia and Asdrubal - oxykinoshitalite, which is higher in Ba than holotype sample (Kogarko et al., 2005). No compositions are found in the kinoshitalite field. In general, a substitution K + Si + (Mg,Fe) + 2(F,OH) « Ba + Al + Ti + 2O is common of all the Calatrava micas.

The major and trace element compositions (Ancochea, 1999, Cebriá, 1992; Lópes-Ruiz et al., 1993; Cebriá, Lópes-Ruiz, 1995) show that all Calatrava rocks are approximately similar in the average contents of TiO2 (0.7-3.8 wt.%) and Ba (445-1600 ppm). However, only mica from tephritic nephelinite and olivine leucitite indicates lower amounts of Ti and Ba. In the case of Ba it can be explained due to abundant presence of earlier feldspars in these rocks because these minerals (especially K-feldspar) are more preferable phases to accumulate Ba than mica.

 

References:

Ancochea E. El Campo volcánico de Calatrava // Enseñanza de las Ciencias de la Tierra. 1999. Vol. 7(3). P. 237-243.

Bailey D.K., Garson M., Kearns S., Velasco A.P., Carbonate volcanism in Calatrava, central Spain: a report on the initial findings // Mineral. Mag. 2005.Vol. 69. P. 907–915.

Cebriá J.M. Geoquímica de las rocas basálticas y leucititas de la región volcánica de Campo de Calatrava, España // PhD thesis, Universidad Complutense de Madrid, 1992, 314 p.

Cebriá J.-M., Lópes-Ruiz J. Alkali basalts and leucitites in an extensional intracontinental plate setting: The late Cenozoic Calatrava Volcanic Province (central Spain) // Lithos. 1995. Vol. 35. P. 27-46.

Chukanov N.V., Mukhanova A.A., Rastsvetaeva R.K., Belakovskiy D.I., Möckel S., Karimova O.V., Britvin S.N., Krivovichev S.V. Oxyphlogopite K(Mg,Fe,Ti)3[(Si,Al)4O10](O,F)2, a new mica group mineral // Zap. RMO. 2010. Part 139 (3). P. 31-40.

Dunworth E.A., Wilson M. Olivine melilitites of the SW German Tertiary volcanic province: mineralogy and petrogenesis // J. Petrol. 1998. Vol. 39. P. 1805-1836.

Edgar A.D. Barium-rich phlogopite and biotite from some Quaternary alkali mafic lavas, West Eifel, Germany // Eur. J. Mineral. 1992. Vol. 4. P. 321-330.

Greenwood J.C. Barian-titanian micas from Ilha da Trindade, South Atlantic // Mineral. Mag. 1998. Vol. 62. P. 687-695.

Henderson C.M.B., Foland K.A. Ba- and Ti-rich primary biotite from the Brome alkaline igneous complex, Monteregian Hills, Quebec: Mechanisms of substitution // Can. Mineral. 1996. Vol. 34. P. 1241-1252.

Kogarko L.I., Uvarova Yu.A., Sokolova E., Hawthorne F.C., Ottolini L., Grice J.D. Oxykinoshitalite, a new species of mica from Fernando de Noronha Island, Pernambuco, Brazil: occurrence and crystal structure // Can. Mineral. 2005. Vol.43. P. 1501-1510.

Lópes-Ruiz J., Cebriá J.M., Doblas M., Oyarzun R., Hoyos M., Martín C. Cenozoic intra-plate volcanism related to extensional tectonics at Calatrava, central Iberia // J. Geol. Soc. London. 1993. Vol. 150. P. 915-922.

Mansker W.L., Ewing R.C., Keil K. Barian-titanian biotites in nephelinites from Oahu, Hawaii // Am. Mineral. 1979. Vol. 64. P. 156-159.

Seifert W., Kampf H. Ba-enrichment in phlogopite of a nephelinite from Bohemia // Eur. J. Mineral. 1994. Vol.6. P. 497-502.

Sharygin V.V. Ba-Ti-rich oxymicas from olivine melanephelinites of the Udokan lava field, Siberia, Russia: chemistry and substitutions // Abstract volume of XXVI International conference “Geochemistry of magmatic rocks”. Moscow. 2009. P. 132-134.

Sharygin V.V., Kryvdik S.G. Ba-Ti-rich phogopite from olivine melaleucitites of the Urmia Lake region, Iran // Abstract volume of XXVII International conference “Geochemistry of magmatic rocks”. Moscow-Koktebel’. 2010. P. 160-162.

Stoppa F., Lloyd F.E., Tranquilli A., Schiazza M. Comment on: Development of spheroid “composite” bombs by welding of juvenile spinning and isotropic droplets inside a mafic “eruption” column by Carracedo Sánchez et al. (2009) // J. Volcanol. Geoth. Res. 2011. DOI:10.1016/j.jvolgeores.2010.11.017.

Zhang M., Suddaby P., Thompson R.N., Dungan M. Barian titanian phlogopite from potassic lavas in northeast China: Chemistry, substitutions, and paragenesis // Am. Mineral. 1993. Vol. 78. P. 1056-1065.